Home Archives Search Feed Football Squares How To Use


PGA Rocket Mortgage Classic - 1st Rd: Which PLAYER will record the LOWER COMBINED SCORE on Holes 17-18?


5:00PM
Hideki Matsuyama (JPN)
Patrick Reed (USA) or Tie


Inputs to Solve

2019 Course Stats

##### User Estimates #####

hole_17 = {'2':38,
          '3':311,
          '4':98,
          '5':5}

hole_18 = {'3':62,
          '4':290,
          '5':89,
          '6':11}
## Inputs Defined in the Problem

stroke_diff = 0

golfers = ['hole17','hole18']

Method to Solve

## [1]

import numpy as np
import pandas as pd

t=sum(hole_17.values())
for i in hole_17:
    hole_17[i] = hole_17[i]/t

t=sum(hole_18.values())
for i in hole_18:
    hole_18[i] = hole_18[i]/t
 
y = np.array([(a,b) for a in hole_17.keys() for b in hole_18.keys()])
scores = pd.DataFrame(y)
scores.columns = golfers
scores = scores.apply(pd.to_numeric)
scores['total_strokes'] = scores.sum(axis=1)

z = np.array([(a,b) for a in hole_17.values() for b in hole_18.values()])
probability = pd.DataFrame(z)
probability.columns = golfers
probability['p'] = probability.product(axis=1)
p_total_scores =[]
total_scores=[]
for s in set(scores['total_strokes']):
    p_total_scores.append(probability['p'][scores['total_strokes']==s].sum())
    total_scores.append(s)
golfers = ['Matsuyama','Reed']

y = np.array([(a,b) for a in total_scores for b in total_scores])
Scores = pd.DataFrame(y)
Scores.columns = golfers
Scores['mat_less'] = Scores['Matsuyama'] < Scores['Reed']

x = np.array([(a,b) for a in p_total_scores for b in p_total_scores])
probability = pd.DataFrame(x)
probability.columns = golfers
probability['p'] = probability.product(axis=1)
Scores
Matsuyama Reed mat_less
0 5 5 False
1 5 6 True
2 5 7 True
3 5 8 True
4 5 9 True
5 5 10 True
6 5 11 True
7 6 5 False
8 6 6 False
9 6 7 True
10 6 8 True
11 6 9 True
12 6 10 True
13 6 11 True
14 7 5 False
15 7 6 False
16 7 7 False
17 7 8 True
18 7 9 True
19 7 10 True
20 7 11 True
21 8 5 False
22 8 6 False
23 8 7 False
24 8 8 False
25 8 9 True
26 8 10 True
27 8 11 True
28 9 5 False
29 9 6 False
30 9 7 False
31 9 8 False
32 9 9 False
33 9 10 True
34 9 11 True
35 10 5 False
36 10 6 False
37 10 7 False
38 10 8 False
39 10 9 False
40 10 10 False
41 10 11 True
42 11 5 False
43 11 6 False
44 11 7 False
45 11 8 False
46 11 9 False
47 11 10 False
48 11 11 False
probability
Matsuyama Reed p
0 0.011532 0.011532 1.329832e-04
1 0.011532 0.148318 1.710381e-03
2 0.011532 0.487744 5.624580e-03
3 0.011532 0.278149 3.207571e-03
4 0.011532 0.066533 7.672499e-04
5 0.011532 0.007455 8.596496e-05
6 0.011532 0.000269 3.104447e-06
7 0.148318 0.011532 1.710381e-03
8 0.148318 0.148318 2.199829e-02
9 0.148318 0.487744 7.234127e-02
10 0.148318 0.278149 4.125459e-02
11 0.148318 0.066533 9.868085e-03
12 0.148318 0.007455 1.105649e-03
13 0.148318 0.000269 3.992825e-05
14 0.487744 0.011532 5.624580e-03
15 0.487744 0.148318 7.234127e-02
16 0.487744 0.487744 2.378940e-01
17 0.487744 0.278149 1.356655e-01
18 0.487744 0.066533 3.245116e-02
19 0.487744 0.007455 3.635924e-03
20 0.487744 0.000269 1.313039e-04
21 0.278149 0.011532 3.207571e-03
22 0.278149 0.148318 4.125459e-02
23 0.278149 0.487744 1.356655e-01
24 0.278149 0.278149 7.736699e-02
25 0.278149 0.066533 1.850616e-02
26 0.278149 0.007455 2.073485e-03
27 0.278149 0.000269 7.487963e-05
28 0.066533 0.011532 7.672499e-04
29 0.066533 0.148318 9.868085e-03
30 0.066533 0.487744 3.245116e-02
31 0.066533 0.278149 1.850616e-02
32 0.066533 0.066533 4.426667e-03
33 0.066533 0.007455 4.959769e-04
34 0.066533 0.000269 1.791118e-05
35 0.007455 0.011532 8.596496e-05
36 0.007455 0.148318 1.105649e-03
37 0.007455 0.487744 3.635924e-03
38 0.007455 0.278149 2.073485e-03
39 0.007455 0.066533 4.959769e-04
40 0.007455 0.007455 5.557073e-05
41 0.007455 0.000269 2.006822e-06
42 0.000269 0.011532 3.104447e-06
43 0.000269 0.148318 3.992825e-05
44 0.000269 0.487744 1.313039e-04
45 0.000269 0.278149 7.487963e-05
46 0.000269 0.066533 1.791118e-05
47 0.000269 0.007455 2.006822e-06
48 0.000269 0.000269 7.247223e-08
## [2]

p_mat = probability['p'][Scores['mat_less']==True].sum()

Solution

print("The probability Matsuyama has a lower score on Holes 17 and 18 is ~ %s" % round(p_mat,3))
The probability Matsuyama has a lower score on Holes 17 and 18 is ~ 0.329



Info

download markdown file
email: krellabsinc@gmail.com
twitter: @KRELLabs

import sys
print(sys.version)
3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 16:07:46) [MSC v.1900 32 bit (Intel)]
Posted on 7/2/2020






← Next post    ·    Previous post →