PGA Rocket Mortgage Classic - 1st Rd: Which PLAYER will record the LOWER COMBINED SCORE on Holes 17-18?
5:00PM
Hideki Matsuyama (JPN)
Patrick Reed (USA) or Tie
Inputs to Solve
##### User Estimates #####
hole_17 = {'2':38,
'3':311,
'4':98,
'5':5}
hole_18 = {'3':62,
'4':290,
'5':89,
'6':11}
## Inputs Defined in the Problem
stroke_diff = 0
golfers = ['hole17','hole18']
Method to Solve
- [1] Enumrate all the possible combinations of observed scores and their respective probabilities on holes 17 and 18.
- [2] Compute the combined probability of each score for each golfer.
- [3] The probability Matsuyama has a lower score on Holes 17 and 18 (p_mat) is the sum of the probabilities where Matsuyama’s score is lower than Reed’s.
## [1]
import numpy as np
import pandas as pd
t=sum(hole_17.values())
for i in hole_17:
hole_17[i] = hole_17[i]/t
t=sum(hole_18.values())
for i in hole_18:
hole_18[i] = hole_18[i]/t
y = np.array([(a,b) for a in hole_17.keys() for b in hole_18.keys()])
scores = pd.DataFrame(y)
scores.columns = golfers
scores = scores.apply(pd.to_numeric)
scores['total_strokes'] = scores.sum(axis=1)
z = np.array([(a,b) for a in hole_17.values() for b in hole_18.values()])
probability = pd.DataFrame(z)
probability.columns = golfers
probability['p'] = probability.product(axis=1)
p_total_scores =[]
total_scores=[]
for s in set(scores['total_strokes']):
p_total_scores.append(probability['p'][scores['total_strokes']==s].sum())
total_scores.append(s)
golfers = ['Matsuyama','Reed']
y = np.array([(a,b) for a in total_scores for b in total_scores])
Scores = pd.DataFrame(y)
Scores.columns = golfers
Scores['mat_less'] = Scores['Matsuyama'] < Scores['Reed']
x = np.array([(a,b) for a in p_total_scores for b in p_total_scores])
probability = pd.DataFrame(x)
probability.columns = golfers
probability['p'] = probability.product(axis=1)
Scores
Matsuyama | Reed | mat_less | |
---|---|---|---|
0 | 5 | 5 | False |
1 | 5 | 6 | True |
2 | 5 | 7 | True |
3 | 5 | 8 | True |
4 | 5 | 9 | True |
5 | 5 | 10 | True |
6 | 5 | 11 | True |
7 | 6 | 5 | False |
8 | 6 | 6 | False |
9 | 6 | 7 | True |
10 | 6 | 8 | True |
11 | 6 | 9 | True |
12 | 6 | 10 | True |
13 | 6 | 11 | True |
14 | 7 | 5 | False |
15 | 7 | 6 | False |
16 | 7 | 7 | False |
17 | 7 | 8 | True |
18 | 7 | 9 | True |
19 | 7 | 10 | True |
20 | 7 | 11 | True |
21 | 8 | 5 | False |
22 | 8 | 6 | False |
23 | 8 | 7 | False |
24 | 8 | 8 | False |
25 | 8 | 9 | True |
26 | 8 | 10 | True |
27 | 8 | 11 | True |
28 | 9 | 5 | False |
29 | 9 | 6 | False |
30 | 9 | 7 | False |
31 | 9 | 8 | False |
32 | 9 | 9 | False |
33 | 9 | 10 | True |
34 | 9 | 11 | True |
35 | 10 | 5 | False |
36 | 10 | 6 | False |
37 | 10 | 7 | False |
38 | 10 | 8 | False |
39 | 10 | 9 | False |
40 | 10 | 10 | False |
41 | 10 | 11 | True |
42 | 11 | 5 | False |
43 | 11 | 6 | False |
44 | 11 | 7 | False |
45 | 11 | 8 | False |
46 | 11 | 9 | False |
47 | 11 | 10 | False |
48 | 11 | 11 | False |
probability
Matsuyama | Reed | p | |
---|---|---|---|
0 | 0.011532 | 0.011532 | 1.329832e-04 |
1 | 0.011532 | 0.148318 | 1.710381e-03 |
2 | 0.011532 | 0.487744 | 5.624580e-03 |
3 | 0.011532 | 0.278149 | 3.207571e-03 |
4 | 0.011532 | 0.066533 | 7.672499e-04 |
5 | 0.011532 | 0.007455 | 8.596496e-05 |
6 | 0.011532 | 0.000269 | 3.104447e-06 |
7 | 0.148318 | 0.011532 | 1.710381e-03 |
8 | 0.148318 | 0.148318 | 2.199829e-02 |
9 | 0.148318 | 0.487744 | 7.234127e-02 |
10 | 0.148318 | 0.278149 | 4.125459e-02 |
11 | 0.148318 | 0.066533 | 9.868085e-03 |
12 | 0.148318 | 0.007455 | 1.105649e-03 |
13 | 0.148318 | 0.000269 | 3.992825e-05 |
14 | 0.487744 | 0.011532 | 5.624580e-03 |
15 | 0.487744 | 0.148318 | 7.234127e-02 |
16 | 0.487744 | 0.487744 | 2.378940e-01 |
17 | 0.487744 | 0.278149 | 1.356655e-01 |
18 | 0.487744 | 0.066533 | 3.245116e-02 |
19 | 0.487744 | 0.007455 | 3.635924e-03 |
20 | 0.487744 | 0.000269 | 1.313039e-04 |
21 | 0.278149 | 0.011532 | 3.207571e-03 |
22 | 0.278149 | 0.148318 | 4.125459e-02 |
23 | 0.278149 | 0.487744 | 1.356655e-01 |
24 | 0.278149 | 0.278149 | 7.736699e-02 |
25 | 0.278149 | 0.066533 | 1.850616e-02 |
26 | 0.278149 | 0.007455 | 2.073485e-03 |
27 | 0.278149 | 0.000269 | 7.487963e-05 |
28 | 0.066533 | 0.011532 | 7.672499e-04 |
29 | 0.066533 | 0.148318 | 9.868085e-03 |
30 | 0.066533 | 0.487744 | 3.245116e-02 |
31 | 0.066533 | 0.278149 | 1.850616e-02 |
32 | 0.066533 | 0.066533 | 4.426667e-03 |
33 | 0.066533 | 0.007455 | 4.959769e-04 |
34 | 0.066533 | 0.000269 | 1.791118e-05 |
35 | 0.007455 | 0.011532 | 8.596496e-05 |
36 | 0.007455 | 0.148318 | 1.105649e-03 |
37 | 0.007455 | 0.487744 | 3.635924e-03 |
38 | 0.007455 | 0.278149 | 2.073485e-03 |
39 | 0.007455 | 0.066533 | 4.959769e-04 |
40 | 0.007455 | 0.007455 | 5.557073e-05 |
41 | 0.007455 | 0.000269 | 2.006822e-06 |
42 | 0.000269 | 0.011532 | 3.104447e-06 |
43 | 0.000269 | 0.148318 | 3.992825e-05 |
44 | 0.000269 | 0.487744 | 1.313039e-04 |
45 | 0.000269 | 0.278149 | 7.487963e-05 |
46 | 0.000269 | 0.066533 | 1.791118e-05 |
47 | 0.000269 | 0.007455 | 2.006822e-06 |
48 | 0.000269 | 0.000269 | 7.247223e-08 |
## [2]
p_mat = probability['p'][Scores['mat_less']==True].sum()
Solution
print("The probability Matsuyama has a lower score on Holes 17 and 18 is ~ %s" % round(p_mat,3))
The probability Matsuyama has a lower score on Holes 17 and 18 is ~ 0.329
Info
download markdown file
email: krellabsinc@gmail.com
twitter: @KRELLabs
import sys
print(sys.version)
3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 16:07:46) [MSC v.1900 32 bit (Intel)]
Posted on 7/2/2020