Home Archives Search Feed Football Squares How To Use


PGA Charles Schwab Challenge - 3rd Rd: Will BOTH X. Schauffele AND R. McIlroy record AT LEAST 1 BIRDIE during Holes 10-13?


4:10PM
Yes: Both birdie during Holes 10-13
No: At least 1 no birdie during Holes 10-13


Inputs to Solve

2020 Course Stats

##### User Estimates #####

p_bird = [45/216, 28/216, 47/216, 38/216]

count = 10
for p in p_bird:
    print("The probability that a golfer BIRDIES hole " + str(count) + " is %s" % round(p,3))
    count +=1

The probability that a golfer BIRDIES hole 10 is 0.208
The probability that a golfer BIRDIES hole 11 is 0.13
The probability that a golfer BIRDIES hole 12 is 0.218
The probability that a golfer BIRDIES hole 13 is 0.176

## Inputs Defined in the Problem

total_birdies = 0

Method to Solve

## [1]

import numpy as np
import pandas as pd


holes = ['10','11','12','13']
outcomes = (1,0)

y = np.array([(a,b,c,d) for a in outcomes for b in outcomes for c in outcomes 
              for d in outcomes])
birdies = pd.DataFrame(y)
birdies.columns = holes
birdies['total_birdies'] = birdies.sum(axis=1)

x = np.array([(a,b,c,d) for a in (p_bird[0],1-p_bird[0]) for b in (p_bird[1],1-p_bird[1]) 
              for c in (p_bird[2],1-p_bird[2]) for d in (p_bird[3],1-p_bird[3])])
probability = pd.DataFrame(x)
probability.columns = holes
probability['p'] = probability.product(axis=1)

birdies
10 11 12 13 total_birdies
0 1 1 1 1 4
1 1 1 1 0 3
2 1 1 0 1 3
3 1 1 0 0 2
4 1 0 1 1 3
5 1 0 1 0 2
6 1 0 0 1 2
7 1 0 0 0 1
8 0 1 1 1 3
9 0 1 1 0 2
10 0 1 0 1 2
11 0 1 0 0 1
12 0 0 1 1 2
13 0 0 1 0 1
14 0 0 0 1 1
15 0 0 0 0 0
probability
10 11 12 13 p
0 0.208333 0.12963 0.217593 0.175926 0.001034
1 0.208333 0.12963 0.217593 0.824074 0.004843
2 0.208333 0.12963 0.782407 0.175926 0.003717
3 0.208333 0.12963 0.782407 0.824074 0.017413
4 0.208333 0.87037 0.217593 0.175926 0.006941
5 0.208333 0.87037 0.217593 0.824074 0.032514
6 0.208333 0.87037 0.782407 0.175926 0.024959
7 0.208333 0.87037 0.782407 0.824074 0.116913
8 0.791667 0.12963 0.217593 0.175926 0.003928
9 0.791667 0.12963 0.217593 0.824074 0.018402
10 0.791667 0.12963 0.782407 0.175926 0.014126
11 0.791667 0.12963 0.782407 0.824074 0.066168
12 0.791667 0.87037 0.217593 0.175926 0.026377
13 0.791667 0.87037 0.217593 0.824074 0.123554
14 0.791667 0.87037 0.782407 0.175926 0.094844
15 0.791667 0.87037 0.782407 0.824074 0.444269
## [2]

p_0 = probability['p'][birdies['total_birdies']==total_birdies].sum()
## [3]

p_1BIRDIE = 1 - (p_0*p_0)

Solution

print("The probability that BOTH X. Schauffele AND R. McIlroy record AT LEAST 1 BIRDIE during Holes 10-13 is ~ %s" % round(p_1BIRDIE,3))

The probability that BOTH X. Schauffele AND R. McIlroy record AT LEAST 1 BIRDIE during Holes 10-13 is ~ 0.803




Info

download markdown file
email: krellabsinc@gmail.com
twitter: @KRELLabs

import sys
print(sys.version)

3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 16:07:46) [MSC v.1900 32 bit (Intel)]

Posted on 6/13/2020






← Next post    ·    Previous post →