Home Archives Search Feed Football Squares How To Use


PGA Charles Schwab Challenge - 2nd Rd: How many BIRDIES will Harold Varner III record on Holes 3-9?


11:05AM
0 or 1
2 or More


Inputs to Solve

2019 Course Stats

##### User Estimates #####

p_bird = [32/378, 40/378, 34/378, 70/378, 72/378, 39/378, 37/378]

count = 3
for p in p_bird:
    print("The probability that a golfer BIRDIES hole " + str(count) + " is %s" % round(p,3))
    count +=1

The probability that a golfer BIRDIES hole 3 is 0.085
The probability that a golfer BIRDIES hole 4 is 0.106
The probability that a golfer BIRDIES hole 5 is 0.09
The probability that a golfer BIRDIES hole 6 is 0.185
The probability that a golfer BIRDIES hole 7 is 0.19
The probability that a golfer BIRDIES hole 8 is 0.103
The probability that a golfer BIRDIES hole 9 is 0.098

## Inputs Defined in the Problem

total_birdies = 1

Method to Solve

## [1]

import numpy as np
import pandas as pd


holes = ['3','4','5','6','7','8','9']
outcomes = (1,0)

y = np.array([(a,b,c,d,e,f,g) for a in outcomes for b in outcomes for c in outcomes 
              for d in outcomes for e in outcomes for f in outcomes for g in outcomes])
birdies = pd.DataFrame(y)
birdies.columns = holes
birdies['total_birdies'] = birdies.sum(axis=1)

x = np.array([(a,b,c,d,e,f,g) for a in (p_bird[0],1-p_bird[0]) for b in (p_bird[1],1-p_bird[1]) 
              for c in (p_bird[2],1-p_bird[2]) for d in (p_bird[3],1-p_bird[3]) 
              for e in (p_bird[4],1-p_bird[4]) for f in (p_bird[5],1-p_bird[5]) 
              for g in (p_bird[6],1-p_bird[6])])
probability = pd.DataFrame(x)
probability.columns = holes
probability['p'] = probability.product(axis=1)

birdies
3 4 5 6 7 8 9 total_birdies
0 1 1 1 1 1 1 1 7
1 1 1 1 1 1 1 0 6
2 1 1 1 1 1 0 1 6
3 1 1 1 1 1 0 0 5
4 1 1 1 1 0 1 1 6
123 0 0 0 0 1 0 0 1
124 0 0 0 0 0 1 1 2
125 0 0 0 0 0 1 0 1
126 0 0 0 0 0 0 1 1
127 0 0 0 0 0 0 0 0

128 rows × 8 columns

probability
3 4 5 6 7 8 9 p
0 0.084656 0.10582 0.089947 0.185185 0.190476 0.103175 0.097884 2.870405e-07
1 0.084656 0.10582 0.089947 0.185185 0.190476 0.103175 0.902116 2.645427e-06
2 0.084656 0.10582 0.089947 0.185185 0.190476 0.896825 0.097884 2.495044e-06
3 0.084656 0.10582 0.089947 0.185185 0.190476 0.896825 0.902116 2.299487e-05
4 0.084656 0.10582 0.089947 0.185185 0.809524 0.103175 0.097884 1.219922e-06
123 0.915344 0.89418 0.910053 0.814815 0.190476 0.896825 0.902116 9.352892e-02
124 0.915344 0.89418 0.910053 0.814815 0.809524 0.103175 0.097884 4.961890e-03
125 0.915344 0.89418 0.910053 0.814815 0.809524 0.103175 0.902116 4.572985e-02
126 0.915344 0.89418 0.910053 0.814815 0.809524 0.896825 0.097884 4.313027e-02
127 0.915344 0.89418 0.910053 0.814815 0.809524 0.896825 0.902116 3.974979e-01

128 rows × 8 columns

## [2]

p_0or1 = probability['p'][birdies['total_birdies']<=total_birdies].sum()

Solution

print("The probability that Harold Varner III records 0 or 1 BIRDIES on holes 3-9 is ~ %s" % round(p_0or1,3))

The probability that Harold Varner III records 0 or 1 BIRDIES on holes 3-9 is ~ 0.793




Info

download markdown file
email: krellabsinc@gmail.com
twitter: @KRELLabs

import sys
print(sys.version)

3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 16:07:46) [MSC v.1900 32 bit (Intel)]

Posted on 6/12/2020






← Next post    ·    Previous post →