Home Archives Search Feed Football Squares How To Use


German Bundesliga: How many HOME TEAMS will WIN in the 9:30 AM ET Bundesliga matches? (5 Matches)


9:30AM
2 or Fewer
3 or More

Inputs Needed to Solve

Odds for Wach Team to Win

##### User Estimates #####

p_home = [1/1.53, 1/2.09, 1/2.67, 1/1.5, 1/2.08]

count = 1
for p in p_home:
    print("The probability that HOME Team " + str(count) + " wins is %s" % round(p,3))
    count +=1

The probability that HOME Team 1 wins is 0.654
The probability that HOME Team 2 wins is 0.478
The probability that HOME Team 3 wins is 0.375
The probability that HOME Team 4 wins is 0.667
The probability that HOME Team 5 wins is 0.481

## Inputs Defined in the Problem

home_teams_win = 2

Method to Solve

## [1]

import numpy as np
import pandas as pd
# Enumerate all possible combinations of AWAY TEAMS WINNING
win = [1,0]

y = np.array([(a,b,c,d,e) for a in win for b in win for c in win for d in win for e in win])
K = pd.DataFrame(y)
K['total_Ws'] = K.sum(axis=1)

K.head(10)
0 1 2 3 4 total_Ws
0 1 1 1 1 1 5
1 1 1 1 1 0 4
2 1 1 1 0 1 4
3 1 1 1 0 0 3
4 1 1 0 1 1 4
5 1 1 0 1 0 3
6 1 1 0 0 1 3
7 1 1 0 0 0 2
8 1 0 1 1 1 4
9 1 0 1 1 0 3
# Compute the probability of all possible combinations AWAY TEAMS WINNING
x = np.array([(a,b,c,d,e) for a in [p_home[0],1-p_home[0]] for b in [p_home[1],1-p_home[1]] for c in [p_home[2],1-p_home[2]]
              for d in [p_home[3],1-p_home[3]] for e in [p_home[4],1-p_home[4]]])

probability = pd.DataFrame(x)
probability['p'] = probability.product(axis=1)

probability.head(10)
0 1 2 3 4 p
0 0.653595 0.478469 0.374532 0.666667 0.480769 0.037540
1 0.653595 0.478469 0.374532 0.666667 0.519231 0.040543
2 0.653595 0.478469 0.374532 0.333333 0.480769 0.018770
3 0.653595 0.478469 0.374532 0.333333 0.519231 0.020272
4 0.653595 0.478469 0.625468 0.666667 0.480769 0.062692
5 0.653595 0.478469 0.625468 0.666667 0.519231 0.067707
6 0.653595 0.478469 0.625468 0.333333 0.480769 0.031346
7 0.653595 0.478469 0.625468 0.333333 0.519231 0.033854
8 0.653595 0.521531 0.374532 0.666667 0.480769 0.040919
9 0.653595 0.521531 0.374532 0.666667 0.519231 0.044192
## [2]
    
p_home2 =  probability['p'][K['total_Ws']<=home_teams_win].sum()

Solution

print("The probability that 2 or Fewer HOME TEAMS WIN is ~%s" % round(p_home2,3))

The probability that 2 or Fewer HOME TEAMS WIN is ~0.441




Info

download markdown file
email: krellabsinc@gmail.com
twitter: @KRELLabs

import sys
print(sys.version)

2.7.12 |Anaconda 4.2.0 (64-bit)| (default, Jun 29 2016, 11:07:13) [MSC v.1500 64 bit (AMD64)]

Posted on 2/8/2020






← Next post    Â·    Previous post →